Podręcznik do kształcenia w zawodach
- technik pojazdów samochodowych
- mechanik pojazdów samochodowych
- elektromechanik pojazdów samochodowych

Marian Doległo

Podstawy elektrotechniki i elektroniki

WKŁ

Wydawnictwa Komunikacji i Łączności
Warszawa

Typy szkół: technikum, zasadnicza szkoła zawodowa.
Zawody: technik pojazdów samochodowych, mechanik pojazdów samochodowych, elektromechanik pojazdów samochodowych.
Kwalifikacje: M.18. Diagnozowanie i naprawa podzespołów i zespołów pojazdów samochodowych; M.12. Diagnozowanie oraz naprawa elektrycznych i elektronicznych układów pojazdów samochodowych.
Rok dopuszczenia: 2016.

621.3:629.11(075)
W podręczniku opisano podstawowe pojęcia związane z elektrotechniką i elektroniką, obwody elektryczne prądu stałego, budowę i zasady działania źródeł napięcia prądu stałego, pole elektryczne, pole magnetyczne, podstawowe podzespoły elektroniczne, obwody elektryczne prądu przemiennego jednofazowego i trójfazowego, maszyny elektryczne prądu stałego i przemiennego, analogowe układy elektroniczne, podstawy techniki cyfrowej oraz podstawy miernictwa elektrycznego. Po każdym rozdziale zamieszczono pytania kontrolne i zadania do samodzielnego rozwiązania, mające pomóc w ugruntowaniu nabytej wiedzy.

Odbiorcy: uczniowie techników samochodowych i zasadniczych szkół samochodowych zdobywający kwalifikacje M.18 i M.12, jak również osoby zdobywające te kwalifikacje w ramach kształcenia indywidualnego (kursowego) i zajmujące się praktyczną działalnością w zakresie techniki samochodowej.

© Copyright by Wydawnictwa Komunikacji i Łączności sp. z o.o., Warszawa 2018

Znaki handlowe oraz nazwy firm i producentów zaprezentowane lub wymienione w książce należą do ich właścicieli i zostały użyte tylko w celach informacyjnych lub ilustracyjnych.

Utwór ani w całości, ani we fragmentach nie może być skanowany, kserowany, powielany bądź rozpowszechniany za pomocą urządzeń elektronicznych, mechanicznych, kopiących, nagrywających i innych, w tym również nie może być umieszczany ani rozpowszechniany w postaci cyfrowej zarówno w Internecie, jak i w sieciach lokalnych bez pisemnej zgody posiadacza praw autorskich.

Wydawnictwa Komunikacji i Łączności sp. z o.o.
ul. Kazimierzowska 52, 02-546 Warszawa
tel. 22-849-27-51; 22-849-23-45
e-mail wkl@wkl.com.pl
Księgarnia internetowa www.wkl.com.pl
Prowadzimy sprzedaż książek w siedzibie firmy

Wydanie 1 (dodruk). Warszawa 2018

Skład i łamanie: GRAFINI
Druk i oprawa: Drukarnia TREND
e-mail: drukarniatrend@wp.pl
Spis treści

Od autora ... 8

<table>
<thead>
<tr>
<th>1</th>
<th>Prąd elektryczny</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Budowa materii</td>
<td>9</td>
</tr>
<tr>
<td>1.2</td>
<td>Przewodnictwo elektryczne materii</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>Prąd elektryczny i jego parametry</td>
<td>13</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Pojęcie prądu elektrycznego</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Parametry prądu</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Podstawowe wiadomości o obwodzie elektrycznym</td>
<td>17</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Obwód elektryczny i jego budowa</td>
<td>17</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Oznaczenie kierunku przepływu prądu i spadków napięcia na schematach obwodów elektrycznych</td>
<td>19</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Symbole graficzne elementów obwodu</td>
<td>20</td>
</tr>
<tr>
<td>1.5</td>
<td>Sprawdzenie wiadomości</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Wprowadzenie do teorii obwodów elektrycznych</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Rezystancja</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Kondukancja i konduktwność</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>Wpływ temperatury na rezystancję</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>Podstawowe prawa elektrotechniki</td>
<td>28</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Prawo Ohma</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Prawa Kirchhoffa</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Klasyczna metoda rozwiązywania obwodów elektrycznych</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Ciepłne działanie prądu. Prawo Joule'a-Lenza</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Praca i moc prądu elektrycznego</td>
<td>37</td>
</tr>
<tr>
<td>2.8</td>
<td>Zjawiska towarzyszące przepływowi prądu elektrycznego w obwodzie</td>
<td>38</td>
</tr>
<tr>
<td>2.9</td>
<td>Pierwsza pomoc przy porażeniu prądem</td>
<td>38</td>
</tr>
<tr>
<td>2.10</td>
<td>Sprawdzenie wiadomości</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Elektrochemiczne wytwarzanie napięcia</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Podstawy elektrochemii</td>
<td>41</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Dysocjacja electrolityczna</td>
<td>41</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Elektroliza</td>
<td>43</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Prawa elektrolizy Faradaya</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Elektrochemiczne źródła napięcia stałego</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Elementarne ogniwo galwaniczne</td>
<td>47</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Budowa ogniwa galwanicznego</td>
<td>47</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Stan obciążenia ogniwa</td>
<td>49</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Ogniwo Volty</td>
<td>49</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Ogniwo Leclanchégo</td>
<td>50</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Współczesne ogniwa galwaniczne</td>
<td>51</td>
</tr>
<tr>
<td>Spis treści</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3.3.6</td>
<td>Zalecenia eksploatacyjne ogniw</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Oznaczenia baterii wg IEC</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Zastosowanie elektrolizy do ochrony przed korozją</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Akumulatory</td>
<td></td>
</tr>
<tr>
<td>3.6.1</td>
<td>Zasada działania ogniwa akumulatora kwasowo-ołowiowego</td>
<td></td>
</tr>
<tr>
<td>3.6.2</td>
<td>Akumulatory kwasowe</td>
<td></td>
</tr>
<tr>
<td>3.6.3</td>
<td>Akumulatory zasadowe</td>
<td></td>
</tr>
<tr>
<td>3.6.4</td>
<td>Akumulatory nowej generacji</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Sprawdzenie wiadomości</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Obwody elektryczne prądu stałego</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Źródło napięcia</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Łączenie źródeł napięcia</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Stany pracy źródła napięcia</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Dzielnik napięcia</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Połączenia rezystorów</td>
<td></td>
</tr>
<tr>
<td>4.5.1</td>
<td>Szeregowo połączenie rezystorów</td>
<td></td>
</tr>
<tr>
<td>4.5.2</td>
<td>Równoległe połączenie rezystorów</td>
<td></td>
</tr>
<tr>
<td>4.5.3</td>
<td>Mieszane połączenie rezystorów</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Sprawdzenie wiadomości</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pole elektryczne i kondensatory</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Pojęcie ładunku elektrycznego</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Elektryzowanie ciał</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Prawo Coulomba</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Pole elektryczne</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Parametry pola elektrycznego</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Zjawisko indukcji elektrostatycznej w praktyce</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Budowa i zasada działania kondensatora</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>Pojęcie pojemności elektrycznej</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>Pojemność kondensatora</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Ładowanie i rozładowanie kondensatora</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Połączenia kondensatorów</td>
<td></td>
</tr>
<tr>
<td>5.11.1</td>
<td>Połączenie szeregowo kondensatorów</td>
<td></td>
</tr>
<tr>
<td>5.11.2</td>
<td>Połączenie równoległe kondensatorów</td>
<td></td>
</tr>
<tr>
<td>5.11.3</td>
<td>Połączenie mieszane kondensatorów</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>Rodzaje kondensatorów</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>Wybrane zastosowania kondensatorów</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>Parametry kondensatorów</td>
<td></td>
</tr>
<tr>
<td>5.15</td>
<td>Sprawdzenie wiadomości</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pole magnetyczne</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Istota pola magnetycznego</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Graficzny obraz pola magnetycznego</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Porównanie pola magnetycznego z elektrycznym</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Podstawowe parametry pola magnetycznego</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>Obwody magnetyczne</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>Przenikalność magnetyczna i właściwości magnetyczne ciał</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>Sprawdzenie wiadomości</td>
<td></td>
</tr>
<tr>
<td>Spis treści</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>7 Elektromagnetyzm</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>7.1 Indukcja elektromagnetyczna</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>7.2 Zasada działania prądnic</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>7.3 Zasada działania silników elektrycznych</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>7.4 Reguła Lenza</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>7.5 Indukcja własna (samoindukcja)</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>7.6 Indukcja wzajemna</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>7.7 Elektromagnes</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>7.8 Kontaktren</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>7.9 Sprawdzenie wiadomości</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>8 Podstawowe wiadomości o prądzie przemiennym</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>8.1 Podstawowe określenia prądu przemiennego</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>8.2 Przesunięcie fazowe przebiegów elektrycznych</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>8.3 Wskazy wielkości sinusoidalnych</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>8.4 Wartość skuteczna prądu przemiennego</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>8.5 Wytwarzanie sinusoidalnie zmiennej siły elektromotorycznej</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>8.6 Sprawdzenie wiadomości</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>9 Obwody elektryczne prądu przemiennego</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>9.1 Wiadomości wstępne</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>9.2 Rezystancja w obwodzie prądu przemiennego</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>9.3 Cewka indukcyjna w obwodzie prądu przemiennego</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>9.3.1 Właściwości cewki indukcyjnej</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>9.3.2 Reaktancja indukcyjna cewki</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>9.4 Kondensator w obwodzie prądu przemiennego</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>9.4.1 Pojmość kondensatora</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>9.4.2 Reaktancja pojemnościowa kondensatora</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>9.5 Szeregowe połączenie elementów R, L i C w obwodzie prądu przemiennego</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>9.6 Równoległe połączenie elementów R, L i C w obwodzie prądu przemiennego</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>9.6.1 Wprowadzenie</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>9.6.2 Równoległe połączenie elementów R i C</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>9.6.3 Równoległe połączenie elementów R i L</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>9.6.4 Równoległe połączenie elementów R, L i C</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>9.7 Zjawisko rezonansu elektrycznego</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>9.8 Sprawdzenie wiadomości</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>10 Transformatory</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>10.1 Wprowadzenie</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>10.2 Budowa transformatora</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>10.3 Zasada działania transformatora</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>10.4 Parametry transformatora</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>10.5 Straty mocy w rdzeniu stalowym odbiorników</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>10.6 Sprawdzenie wiadomości</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>11 Moc prądu przemiennego</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>11.1 Pojęcie mocy prądu przemiennego</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>11.2 Moc pozorna</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>Spis treści</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3 Moc czynna ...</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>11.4 Moc bierna ...</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>11.5 Współczynnik mocy czynnej</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>11.6 Sprawdzenie wiadomości</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>12 Prąd trójfazowy ...</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>12.1 Wytwarzanie prądu trójfazowego</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>12.2 Połączenie w gwiazdę twornika prądnicy</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>12.3 Ochrona przeciwporażeniowa</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>12.4 Połączenie w trójkąt twornika prądnicy</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>12.5 Eksploatacja urządzeń trójfazowych</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>12.6 Moc w obwodzie prądu trójfazowego</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>12.7 Sprawdzenie wiadomości</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>13 Maszyny elektryczne</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>13.1 Maszyny prądu stałego</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>13.1.1 Budowa maszyn prądu stałego</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>13.1.2 Prądnice prądu stałego</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>13.1.3 Siłniki prądu stałego, ich parametry i rodzaje</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>13.2 Maszyny prądu przemiennego</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>13.2.1 Rodzaje maszyn ...</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>13.2.2 Prądnice prądu przemiennego</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>13.2.3 Siłniki prądu przemiennego</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>13.3 Siłniki krokowe ...</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>13.4 Sprawdzenie wiadomości</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>14 Elektroniczne elementy półprzewodnikowe</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>14.1 Materiały półprzewodnikowe</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>14.2 Złącze p-n ...</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>14.3 Jednorodne elementy półprzewodnikowe</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>14.3.1 Termistor ...</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>14.3.2 Warystor ..</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>14.3.3 Hallotron ...</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>14.4 Elementy elektroniczne wykorzystujące złącze p-n</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>14.4.1 Dioda prostownicza</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>14.4.2 Dioda Zenera ...</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>14.4.3 Dioda pojemnościowa</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>14.4.4 Tranzystor ...</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>14.4.5 Tyrystor i triak ..</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>14.5 Podzespoły fotoelektryczne</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>14.5.1 Dioda elektroluminescencyjna</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>14.5.2 Laser półprzewodnikowy</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>14.5.3 Fotodioda i fototranzystor</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>14.5.4 Transoptor ...</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>14.6 Sprawdzenie wiadomości</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>15 Analogowe układy elektroniczne</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>15.1 Układy zasilające ..</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>15.2 Układy stabilizacji napięcia i prądu</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>15.3</td>
<td></td>
<td>Układy wzmacniające</td>
</tr>
<tr>
<td>15.3.1</td>
<td></td>
<td>Wiadomości podstawowe</td>
</tr>
<tr>
<td>15.3.2</td>
<td></td>
<td>Sprzężenie zwrotne</td>
</tr>
<tr>
<td>15.3.3</td>
<td></td>
<td>Wzmacniacz operacyjny</td>
</tr>
<tr>
<td>15.4</td>
<td></td>
<td>Układy generacyjne</td>
</tr>
<tr>
<td>15.5</td>
<td></td>
<td>Sprawdzenie wiadomości</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Technika cyfrowa</td>
</tr>
<tr>
<td>16.1</td>
<td></td>
<td>Zamiana sygnału analogowego na cyfrowy</td>
</tr>
<tr>
<td>16.2</td>
<td></td>
<td>Pojęcie bitu</td>
</tr>
<tr>
<td>16.3</td>
<td></td>
<td>Wykorzystanie bitów do przekazywania informacji</td>
</tr>
<tr>
<td>16.4</td>
<td></td>
<td>Sposoby kodowania informacji</td>
</tr>
<tr>
<td>16.5</td>
<td></td>
<td>Transzytor jako klucz elektroniczny</td>
</tr>
<tr>
<td>16.6</td>
<td></td>
<td>Podstawowe operacje logiczne</td>
</tr>
<tr>
<td>16.7</td>
<td></td>
<td>Bramki logiczne</td>
</tr>
<tr>
<td>16.8</td>
<td></td>
<td>Układy cyfrowe</td>
</tr>
<tr>
<td>16.9</td>
<td></td>
<td>Podstawy budowy systemów komputerowych</td>
</tr>
<tr>
<td>16.9.1</td>
<td></td>
<td>Wiadomości wstępne</td>
</tr>
<tr>
<td>16.9.2</td>
<td></td>
<td>Procesor</td>
</tr>
<tr>
<td>16.9.3</td>
<td></td>
<td>Pamięci</td>
</tr>
<tr>
<td>16.9.4</td>
<td></td>
<td>Komputer jednoukładowy – mikrokontroler</td>
</tr>
<tr>
<td>16.10</td>
<td></td>
<td>Sprawdzenie wiadomości</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Urządzenia pomiarowe wielkości elektrycznych</td>
</tr>
<tr>
<td>17.1</td>
<td></td>
<td>Multimetr</td>
</tr>
<tr>
<td>17.2</td>
<td></td>
<td>Woltomierz cyfrowy</td>
</tr>
<tr>
<td>17.3</td>
<td></td>
<td>Pomiar napięcia, natężenia prądu i rezystancji</td>
</tr>
<tr>
<td>17.3.1</td>
<td></td>
<td>Wiadomości wstępne</td>
</tr>
<tr>
<td>17.3.2</td>
<td></td>
<td>Pomiary miernikiem analogowym</td>
</tr>
<tr>
<td>17.3.3</td>
<td></td>
<td>Pomiary miernikiem cyfrowym</td>
</tr>
<tr>
<td>17.4</td>
<td></td>
<td>Oscyloskop</td>
</tr>
<tr>
<td>17.4.1</td>
<td></td>
<td>Budowa oscyloskopu</td>
</tr>
<tr>
<td>17.4.2</td>
<td></td>
<td>Pomiary oscyloskopem</td>
</tr>
<tr>
<td>17.4.3</td>
<td></td>
<td>Niestandardowe wyposażenie oscyloskopu</td>
</tr>
<tr>
<td>17.4.4</td>
<td></td>
<td>Oscyloskop z przetwarzaniem cyfrowym</td>
</tr>
<tr>
<td>17.5</td>
<td></td>
<td>Sprawdzenie wiadomości</td>
</tr>
</tbody>
</table>

Literatura | | | 388 |

Ważniejsze oznaczenia literami greckimi użyte w podręczniku | | III str. okładki
Praca ucznia na lekcji w ciągu ostatnich lat uległa zasadniczej zmianie. Współcześnie nauczyciele przy prowadzeniu zajęć wykorzystują sprzęt multimedialny i programy komputerowe. Zmieniła się także młodzież i jej nastawienie do zdobywania wiedzy. Zainteresowanie wzbudza wiedza przekazywana za pomocą obrazów lub filmów symulacji komputerowej. Tekst i podręcznik nie wzbudzają dużego zainteresowania i zajmują jedno z ostatnich miejsc wśród pomocy dydaktycznych, po które chętnie sięgałby uczeń. Nie-mniej jednak nadal jest on podstawowym narzędziem zdobywania wiedzy i jest niezbędny przy powtarzaniu materiału i przygotowywaniu się do egzaminu.

Niniejszy podręcznik jest próbą zainteresowania ucznia wiadomościami podanymi w sposób przystępny, przejrzysty, na średnim poziomie zaawansowania, dostępnym nie tylko dla ucznia zdolnego, ale także, z pomocą nauczyciela, dla ucznia o szczególnych potrzebach edukacyjnych.

Z tego względu pominięto bardziej skomplikowane obliczenia, wzory czy też założenia, które utrudniłyby zrozumienie istoty praw rządzących przepływem prądu oraz towarzyszących temu zjawisk. Zakres tematyczny podręcznika obejmuje podstawy elektrotechniki i elektroniki. Jest to obszerny materiał. Nauczyciel powinien więc dostosować zakres wiedzy przekazywanej na lekcjach do potrzeb i możliwości intelektualnych uczniów oraz zmieniających się wymagań rynku pracy.

Celem niniejszego podręcznika jest, zgodnie z nową podstawą programową, przekazanie uczniowi podstaw wiedzy umożliwiającej zrozumienie zasad działania i diagnozowanie urządzeń elektrycznych i elektronicznych, z którymi zetknie się w miejscu przyszłej pracy. Umożliwia on osiągnięcie efektów kształcenia dotyczących elektryczno-elektronicznego obszaru wiedzy określonych w grupie oznaczonej jako PKZ(E.a).

Ponieważ w nowej podstawie programowej dla ucznia kształcącego się w zawodzie technika pojazdów samochodowych występuje dodatkowa grupa efektów kształcenia oznaczona kodem PKZ(M.b), według której ma on dodatkowo m.in. stosować prawa i przestrzegać zasad mechaniki technicznej, elektrotechniki, elektroniki i automatyki, w niniejszym podręczniku treści nauczania wymagane od technika pojazdów samochodowych podano na cytrynowym tle.

Natomiast treści wspólne dla technika, mechanika i elektromechanika pojazdów samochodowych wydrukowano na białym tle.

W odniesieniu do mechanika i elektromechanika pojazdów samochodowych teksty wydrukowane na cytrynowym tle mogą stanowić materiał rozszerzający, przeznaczony dla zdolnych uczniów zasadniczych szkół zawodowych pragnących pogłębić swą wiedzę fachową.

Dlatego też podręcznik ten jest w pewnym stopniu pracą nowatorską. Proszę więc wszystkich odbiorców tego podręcznika, a zwłaszcza nauczycieli, o przekazywanie krytycznych spostrzeżeń i zaleceń, które w miarę możliwości postaram się uwzględnić w ewentualnym następnym wydaniu.

Jednocześnie pragnę podziękować wszystkim, którzy podczas pisania tego podręcznika okazali mi dużo cierpliwości i życzliwą pomoc.
Prąd elektryczny

W tym rozdziale dowiemy się:

- jak są zbudowane wszystkie ciała w przyrodzie;
- skąd się biorą ładunki elektryczne;
- jakie właściwości elektryczne mają przewodniki, półprzewodniki i izolatory;
- co to jest prąd elektryczny i jakimi parametrami się go charakteryzuje;
- jakie są podstawowe rodzaje prądu elektrycznego.

Budowa materii

Wszystkie ciała w przyrodzie są zbudowane z niepodzielnych elementów zdolnych do samodzielnego istnienia nazywanych atomami. Zbiór atomów tego samego rodzaju, który charakteryzuja określone właściwości, nazywa się pierwiastkiem. Pierwiastki w natural-nych warunkach mogą być ciałami stałymi (np. cynk, siarka, aluminium, żelazo), cieczami (m.in. rtęć) lub gazami (np. wodór, tlen, azot).

Prąd elektryczny

Jądro każdego atomu (z wyjątkiem wodoru) składa się z naładowanych dodatnio protonów i obojętnych elektrycznie neutronów. Nazywa się je razem nukleonami. Liczba nukleonów to tzw. liczba masowa (A) atomu. Natomiast liczba protonów w jądrze nazywa się liczbą atomową (Z). Liczba atomowa jest podstawą uporządkowania atomów w układzie okresowym pierwiastków. Jądro oznacza się symbolem chemicznym danego pierwiastka (X), przed którym w indeksie górnym umieszcza się liczbę masową, a w indeksie dolnym można umieścić dodatkowo liczbę atomową, czyli symbol chemiczny ma postać $^{A}_{Z}X$.

Stwierdzono, że ładunki elektryczne tego samego rodzaju, czyli tzw. jednoimienne (dodatnie lub ujemne), odpychają się, a ładunki elektryczne różnoimienne (dodatnie i ujemne) się przyciągają. Elektrony są przyciągane przez protony znajdujące się w jądrze atomu. Ponieważ elektrony krążą wokół jądra z dużą prędkością, wytworzona siła odśrodkowa równoważy siłę przyciągania protonów i układ znajduje się w równowadze.

Mimo że protony mają ten sam rodzaj ładunku, a więc odpychają się, są skupione w jądrze atomu. Siły odpychania protonów neutralizują zgromadzone w jądrze neutrony. Gdyby jądro atomu pozbawić neutronów, uległoby ono rozpadowi wskutek wzajemnego odpychania się protonów.

Atomy poszczególnych pierwiastków różnią się liczbami protonów i neutronów oraz elektronów i ich orbit. Na poszczególnych powłokach, które oznacza się wielkimi literami, może się znajdować tylko ściśle określona maksymalna liczba elektronów (tabl. 1-1).

Warto wiedzieć, że liczba neutronów w jądrze danego pierwiastka nie zawsze jest równa liczbie protonów. Odmiany pierwiastka różniące się liczbą neutronów w jądrze atomu nazywają się izotopami. Na przykład węgiel ma trzy izotopy (12C, 13C i 14C).

O przewodnictwie elektrycznym decyduje liczba elektronów występujących na zewnętrznej orbicie, którą nazywamy powłoką walencyjną. Elektrony krążące na powłoce walencyjnej nazywa się elektronami walencyjnymi.
Aby uzyskać stabilną konfigurację elektronową, atomy łączą się z innymi atomami, wymieniając się wzajemnie elektronami na powłokach walencyjnych i tworząc cząsteczkę o stabilnym wiązaniu atomowym (rys. 1.4).

<table>
<thead>
<tr>
<th>Numer powłoki (liczony od jądra)</th>
<th>Symbol powłoki</th>
<th>Maksymalna liczba elektronów</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>P</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>Q</td>
<td>98</td>
</tr>
</tbody>
</table>

Rys. 1.4
Wiązanie atomowe cząsteczki wodoru (H₂)

Elektrycznie obojętny stan atomu może ulec zmianie. Utrata jednego lub większej liczby elektronów walencyjnych wywołuje elektryczne uaktywnienie atomu, który staje się naładowany dodatnio. Ujemne naładowanie atomu powoduje natomiast wprowadzenie jednego lub większej liczby dodatkowych elektronów.

W ciałach stałych atomy są ze sobą sztywno powiązane, tworząc charakterystyczny układ nazywany siecią krystaliczną (rys. 1.5).

Rys. 1.5
Sieć krystaliczna metalu

W sieci krystalicznej metali występują elektrony niezwiązane z żadnym atomem, które znajdowały się pierwotnie na zewnętrznej orbicie każdego atomu (były elektronami walen-
Prąd elektryczny

Nazywają się one **elektronami swobodnymi** (rys. 1.6). Średnio jeden elektron swobodny przypada na jeden atom. Elektrony swobodne wykonują ruchy drgające, bezładne, chaotyczne – poruszają się swobodnie w obrębie całej sieci krystalicznej. Ich przepływ nazywamy prądem elektrycznym.

Przewodnictwo elektryczne materii

Ze względu na właściwości elektryczne wszystkie ciała w przyrodzie dzielimy na:
- przewodniki,
- izolatory,
- półprzewodniki.

Przewodniki. Właściwości elektryczne tych ciał zależą od liczby elektronów walencyjnych, czyli tych znajdujących się na ostatniej powłoce (orbicie). Gdy ich liczba jest mniejsza niż 4, są one słabo związane z jądrem atomu. Po uzyskaniu dodatkowej energii (np. wskutek ogrzewania) mogą one oderwać się od atomu, stając się elektronami swobodnymi. Pozbawione elektronów walencyjnych atomy wykazują ładunek dodatni, wynikający z przewagi liczby protonów nad liczbą elektronów. Atom taki nazywa się jonem dodatnim lub kationem. Natomiast jony ujemne, zwane także anionami, występują, gdy w atomie liczba elektronów jest większa niż liczba protonów w jądru. Proces uwalniania się elektronów od atomu nazywa się jonizacją. Takie same właściwości elektryczne jak atomy charakteryzują grupy atomów, czyli cząstki. One także są jonami i mogą być naładowane dodatnio (kationy) lub ujemnie (aniony).

Izolatory. Przeciwwstawną do przewodników grupą materiałów są izolatory, nazywane inaczej dielektrykami. Izolatory nie mają nośników ładunków lub mają ich tylko sładową
ilość. Elektrony walencyjne w izolatorach, których może być 5, 6 lub 7, są silnie związane z atomem i nie mogą opuścić tej powłoki. Do izolatorów zalicza się m.in. porcelanę, szkło, tworzywa sztuczne, papier, wodę destylowaną, oleje mineralne i gazy, a także pierwiastki niemetaliczne (np. siarkę i fosfor).

Półprzewodniki. Stanowią one trzecią grupę materiałów. W zależności od warunków, w których się znajdują, mogą być dobrymi przewodnikami lub izolatorami. Do półprzewodników należą przewodniki, które mają na ostatniej orbicie 4 elektrony, np. german (Ge), krzem (Si), selen (Se), a także związki chemiczne antymonu (Sb) i arsenu (As) oraz tlenki niektórych metali.

Prąd elektryczny i jego parametry
Pojęcie prądu elektrycznego

Prądem elektrycznym nazywamy uporządkowany ruch elektronów swobodnych w metalach (rys. 1.7) i jonów w elektrolitach. Uporządkowany ruch nośników ładunku oznacza, że poruszają się one w określonym kierunku, tzn. do punktu, którego stopień naładowania jest wyższy i przeciwny w stosunku do rodzaju przemieszczającego się ładunku (dodatniego lub ujemnego). Na przykład elektrony swobodne będą się przemieszczały do punktu naładowanego dodatnio. Punktem takim może być np. biegun dodatni akumulatora.

Rys. 1.7 Schemat przepływu prądu w przewodniku jako uporządkowanego ruchu elektronów swobodnych

Stopień naładowania elektrycznego danego punktu przestrzeni nazywamy **potencjałem elektrycznym** i oznaczamy literą V z indeksem będącym oznaczeniem punktu (np. V_A, V_B, V_C).

Prędkość przemieszczania się elektronów swobodnych jest niewielka. Wynosi ok. 3 cm/s, czyli w ciągu minuty prąd elektryczny pokona niecałe 2 metry.
Prąd elektryczny

Płynący w obwodzie prąd elektryczny może mieć przez cały czas wartość stałą i płynąć tylko w jednym kierunku (rys. 1.8.). Prąd taki nazywamy **prądem stałym** i oznaczamy symbolem DC (ang. *direct current*).

Prąd stały ma wiele zalet. Między innymi można go gromadzić w akumulatorach i następnie zasilać instalację elektryczną samochodu (np. rozruszniki i silniki krokowe w układzie wtryskowym). Prąd stały umożliwia także przeprowadzanie elektrolizy, np. przy pokrywaniu powłoką antykorozyjną blach nadwozi samochodów.

Prąd stały ma jednak podstawową wadę – nie może być przekształcany, czyli transformowany. Przez to nie można przekazywać go na duże odległości, a także dowolnie zmieniać jego wartości. Cechę transformowalności ma natomiast prąd zmienny.

Prądem zmiennym nazywamy prąd, którego natężenie zmienia się w czasie (rys. 1.9.).

Do zasilania współczesnych urządzeń gospodarstwa domowego oraz sprzętu komputerowego i audiowizualnego wykorzystuje się prąd stały, otrzymany z przekształcenia prądu
Prąd elektryczny i jego parametry

przemiennego, płynącego w domowej sieci elektrycznej o napięciu 230 V. Występowanie prądu przemiennego w domowej sieci elektrycznej wynika z konieczności dostarczenia go do miast i osiedli z elektrowni odległej nieraz o kilkaset kilometrów.

Parametry prądu

Natężenie prądu elektrycznego

Miarą wielkości przepływającego prądu elektrycznego jest jego natężenie. Ma ono jednolitą wartość we wszystkich punktach drogi przepływu prądu.

Natężenie prądu elektrycznego jest to ilość elektronów swobodnych przepływających w danym miejscu (przekroju) przewodu, którym płynie prąd, w jednostce czasu (np. w ciągu 1 sekundy).

Jeżeli ilość przepływających elektronów podczas pomiaru będzie stała, to natężenie prądu \(I \) można obliczyć za pomocą wzoru

\[
I = \frac{Q}{t}
\]

gdzie:

\(Q \) – wartość przepływającego ładunku elektrycznego,
\(t \) – czas przepływu.

Jednostką natężenia prądu jest amper (A). Natomiast wartość ładunku elektrycznego mierzymy w kulombach (C). Ładunek elektryczny 1 elektronu jest bardzo mały w porównaniu z 1 kulombem i wynosi \(1,6 \cdot 10^{-19} \) C, a więc na 1 kulomb przypada 6,25 tryliona elektronów \((6,25 \cdot 10^{18}) \).

Aby przez przewód przepływał prąd o natężeniu 1 A, w ciągu 1 s musi przez niego przepłynąć ładunek elektryczny 1C, czyli

\[1 \text{ A} = 1 \text{ C/s}\]

Natężenie prądu często dla uproszczenia nazywa się w skrócie prądem.

Natężenie prądu w różnych odbiornikach elektrycznych ma zróżnicowane wartości. Na przykład w żarówkach samochodowych światła mijania wynosi ono ok. 3,3 A, samochodowych światł pozycyjnych – ok. 0,33 A, a samochodowych światła hamowania – ok. 1,75 A. Natomiast rozrusznik samochodu osobowego pobiera prąd 75–150 A. Człowiek odczuwa prąd 0,001 A. W praktyce często spotyka się jednostki znacznie mniejsze od ampera – miliampery oraz mikroampery.

\[1 \text{ mA} = 0,001 \text{ A} = 1 \cdot 10^{-3} \text{ A}\]

\[1 \mu\text{A} = 0,000001 \text{ A} = 1 \cdot 10^{-6} \text{ A}\]
Napięcie elektryczne

Znajdujące się na przykład w metalu elektrony swobodne poruszają się w nim bezładnym ruchem drgającym. W celu wywołania przepływu prądu trzeba zmusić elektrony do ruchu w jednym kierunku. Siłą, która powoduje ruch elektronów, jest napięcie. Jest to siła pola elektrycznego, tzn. występuje ona w polu elektrycznym między dwoma dowolnymi punktami. Każdy z tych punktów charakteryzuje inny poziom potencjału elektrycznego. Punkt o wyższym potencjał, będzie działał na elektrony siłą przyciągającą, a punkt o niższym potencjał będzie te elektrony odpychał. Oddziaływanie pola elektrycznego spowoduje więc przesunięcie elektronów między opisanymi punktami, co spowoduje przepływ prądu.

Wartość napięcia elektrycznego możemy wyznaczyć dwoma sposobami, które podano poniżej.

1. Jako różnicę potencjałów punktów A (V_A) i B (V_B), między którymi przemieszcza się ładunek (rys. 1.11.)

$$U_{AB} = V_A - V_B$$

(1.2)

2. Jako pracę wykonaną podczas przemieszczania ładunku w polu elektrycznym z punktu A do punktu B (W_{AB}) odniesioną do wartości (Q) tego ładunku

$$U_{AB} = \frac{W_{AB}}{Q}$$

(1.3)

Jednostką napięcia jest wolt (V). W celu określenia wartości tej jednostki należy posłużyć się pracą, którą wykonuje przepływający prąd elektryczny. Jeżeli prąd o stałej wartości $1 \, \text{A}$, przenosząc ładunek $1 \, \text{C}$ w ciągu $1 \, \text{s}$, wykona pracę $1 \, \text{J}$, to napięcie wymuszające przepływ takiego prądu wyniesie $1 \, \text{V}$. Zatem

$$1 \, \text{V} = 1 \, \text{J}/\text{C}$$

Przykładowe wartości napięcia spotykane w praktyce są następujące:

- akumulator samochodowy ok. $12 \, \text{V}$,
- domowa sieć elektryczna $230 \, \text{V}$,
- sieć trójfazowa $400 \, \text{V}$,
- kolejowa sieć trakcyjna $1500 \, \text{V}$ lub $3000 \, \text{V}$,
- sieć przesyłowa energii elektrycznej $10 \, 000 \text{ do } 440 \, 000 \, \text{V}$.

Ze względu na zróżnicowanie napięć występujących w praktyce często stosuje się podwielokrotności i wielokrotności jednostki podstawowej napięcia – miliwolty i kilowolty.

$$1 \, \text{mV} = 0,001 \, \text{V} = 1 \cdot 10^{-3} \, \text{V}$$

$$1 \, \text{kV} = 1000 \, \text{V} = 1 \cdot 10^3 \, \text{V}$$

W przeciwieństwie do natężenia prądu napięcie elektryczne nie ma jednakowej wartości w całym obwodzie elektrycznym, lecz rozkłada się na części nazywane spadkami
napięcia, występujące na poszczególnych elementach obwodu, przez które przepływa prąd elektryczny (rys. 1.12). Impuls napięcia przenosi się w przewodach elektrycznych z prędkością światła, a więc ok. 300 000 km/s.

![Rys. 1.12](image.png)

Rozkład spadków napięcia od U_1 do U_4 w obwodzie elektrycznym

Gęstość prądu

Gęstość przepływającego prądu istotnie wpływa na dobór przekroju przewodów w obwodzie elektrycznym, a także uzwojeń elektrycznych przyrządów, maszyn i transformatorów.

Gęstość prądu J jest stosunkiem natężenia prądu I do pola powierzchni przekroju S przewodu, przez który ten prąd przepływa. Gęstość prądu jest więc miarą natężenia prądu przepływającego przez jednostkę przekroju.

\[
J = \frac{I}{S}
\]

Jednostką gęstości prądu w układzie SI jest A/m². W praktyce stosuje się jednostkę dostosowaną do średnicy przewodu podawanej w milimetrach i wówczas

\[
[J] = \frac{A}{mm^2}
\]

Przy doborze gęstości prądu, który może płynąć w przewodach, uwzględnia się m.in. chłodzenie, grubość uzwojenia i natężenie przepływającego prądu. Na przykład łatwiej jest odprowadzać ciepło w uzwojeniach wirujących niż nieruchomych.

Dla drutu o małym przekroju można przyjmować większą gęstość prądu, ponieważ odprowadzenie ciepła z przewodów o małym przekroju jest lepsze. Skutkiem nieprawidłowego dobierania dopuszczalnej gęstości prądu jest termiczne uszkodzenie przewodu.

Podstawowe wiadomości o obwodzie elektrycznym

1.4

1.4.1

Obwód elektryczny i jego budowa

Podstawowym warunkiem przepływu prądu elektrycznego jest istnienie źródła napięcia, które wprawi w ruch swobodne elektrony znajdujące się w strukturze materii. Jeżeli będzie to np. przewód elektryczny, elektrony będą się poruszały wewnątrz niego i wzdłuż jego dłu-
Prąd elektryczny

gości. Elektrony poruszają się od ujemnego do dodatniego biegunu źródła napięcia. Droga, którą przemierzają elektrony, nazywa się obwodem elektrycznym. Aby elektrony mogły poruszać się od jednego biegunu do drugiego, oba bieguny muszą być ze sobą połączone elementami zawierającymi swobodne elektrony, w tym przypadku przewodem. Mówimy, że obwód elektryczny jest wtedy zamknięty i jest to drugi warunek umożliwiający przepływ prądu elektrycznego. Jeśli obwód elektryczny zostanie otwarty, czyli połączenie między biegunami będzie przerwane, prąd przestanie płynąć.

Na obwód elektryczny składają się:
- źródło energii elektrycznej, czyli źródło napięcia lub prądu, nazywane też aktywnym elementem obwodu elektrycznego;
- przewody łączące;
- elementy elektryczne (odbiorniki) nazywane elementami biernymi, które mogą mieć charakter rezystancyjny (opornik R), indukcyjny (cewka L) bądź pojemnościowy (kondensator C).

W zależności od tego, jak bardzo jest rozbudowana droga przepływu prądu, rozróżniamy obwody elektryczne:
- proste (nierozgałęzione), w których istnieje tylko jedna droga przepływu prądu (rys. 1.13);
- złożone (rozgałęzione), gdy zawierają co najmniej dwie niezależne i zamknięte drogi przepływu prądu (rys. 1.14).

W obwodzie elektrycznym występują następujące części składowe (rys. 1.15):
- węzeł, czyli punkt połączenia co najmniej trzech przewodów lub odbiorników;
- gałąź, która łączy dwa sąsiednie węzły i może zawierać jeden lub kilka odbiorników;
- oczko, czyli wydzielona część obwodu elektrycznego złożona co najmniej z dwóch gałęzi w taki sposób, że przerwanie połączenia w jednej z gałęzi spowoduje przerwę przepływu prądu w oczku.

Rysunek obrazujący wzajemne połączenie źródła napięcia i elementów występujących w obwodzie nazywamy schematem obwodu elektrycznego. Elementy składowe obwodu elektrycznego przedstawiamy na schemacie za pomocą ujednoliconych symboli graficznych. Najczęściej stosowane symbole przedstawiono w rozdziale 1.4.3.
Oznaczanie kierunku przepływu prądu i spadków napięcia na schematach obwodów elektrycznych

Na schematach obwodów elektrycznych kierunek przepływu prądu oznacza się strzałką skierowaną od potencjału wyższego (biegun dodatni „+”) do potencjału niższego (biegun ujemny „−”), a więc odwrotnie niż rzeczywisty kierunek przepływu elektronów. Sprzeczność ta wynika z wcześniejszego założenia oznaczania kierunku przepływu prądu w opracowaniach naukowych, zanim poznano i wyjaśniono istotę prądu. Aby nie wprowadzać zamieszania, jakie wiązałoby się ze zmianą oznaczeń, w pracach naukowych pozostawiono ten sposób oznaczania kierunku przepływu prądu.

Natomiast spadki napięć na odbiornikach zaznacza się strzałką skierowaną w kierunku wyższego potencjału (rys. 1.12). Istotę takiego sposobu oznaczania kierunku działania napięcia można wyjaśnić, przyrównując obwód prądu elektrycznego do obwodu hydraulicznego (rys. 1.16), w którym:
- przewody elektryczne zastąpiono przewodami rurowymi;
- źródło napięcia reprezentuje pompa tłocząca ciecz, która zastępuje strumień elektronów;
- odbiornikami są zwężki hydrauliczne, a więc elementy stwarzające opór dla przepływającej cieczy.

Przed wlotem do zwężki Z (punkt A, rys. 1.16) zbiera się dużo elektronów, ponieważ ich przepływ jest utrudniony. W związku z tym punkt A zaczyna wykazywać ujemny stan naładowania (potencjał ujemny), a za zwężką (punkt B) liczba elektronów wypływających jest niewielka (ogranicza ją zwężenie). Miejsce to wykazuje więc mniejszy stopień naładowania ujemnego w stosunku do punktu wejściowego A zwężki, czyli jest bardziej dodatnie.
Prąd elektryczny

(choć w rzeczywistości też ujemnie naładowane), czyli wykazuje potencjał dodatni. Z tego
względu groź strzałki oznaczającej spadek napięcia \(U \) jest skierowany do wyjścia złączki
\((B) \), a więc do punktu o wyższym potencjale.

1.4.3 Symbole graficzne elementów obwodu

Poniżej, w tablicy 1-2, zestawiono wybrane symbole graficzne występujące na schematach
obwodów elektrycznych.

<table>
<thead>
<tr>
<th>Przewód elektryczny, drut</th>
<th>Łącznik wielopołożeniowy</th>
</tr>
</thead>
</table>
| Skrzyżowanie dwóch przewo-
| dów na schemacie, niepołączo-
| nych elektrycznie | Idealne źródło prądu |
| Połączenie elektryczne dwóch
| przewodów (np. skręcone, zlu-
| towane albo zaciśnięte) | Idealne źródło napięcia |
| Uziemienie | Przyłącze masy, np. masa
| w samochodzie |
| Bateria lub akumulator, dłuższa
| kreska oznacza biegun dodatni,
| krótsza ujemny | Żarówka |
| Przetwornik (napięcia) zamie-
| niający napięcie przemienną
| w napięcie stałe | Miernik, woltomierz |
| Bezpiecznik | Miernik, amperomierz |
| Zestyk zwierny, po jego urucho-
| mieniu obwód elektryczny zosta-
| je zamknięty \(\Rightarrow \) zwiernik | Miernik, omomierz |
| Zestyk rozwierhny, po jego uru-
| chomieniu obwód elektryczny
| zostaje przerwany \(\Rightarrow \) rozwierhnik | Silnik prądu stałego,
| np. wycieraczek szyb
<p>| lub dmuchawy w samochodzie |</p>
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Napis</th>
<th>Rozw.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50Hz</td>
<td>Napięcie lub prąd przemienne o częstotliwości 50 Hz</td>
</tr>
<tr>
<td></td>
<td>Rezystor</td>
<td>Transformator z żelaznym rdzeniem, np. cewka zapłonowa</td>
</tr>
<tr>
<td></td>
<td>Potencjometr</td>
<td>Przełącznik, ogólnie</td>
</tr>
<tr>
<td></td>
<td>Dioda pojemnościowa (waricap)</td>
<td>Dioda</td>
</tr>
<tr>
<td></td>
<td>Tyristor dwukierunkowy (triak)</td>
<td>Dioda Zenera</td>
</tr>
<tr>
<td></td>
<td>Warystor</td>
<td>Dioda świecąca (LED)</td>
</tr>
<tr>
<td></td>
<td>Termistor</td>
<td>Fotodioda, przepływający prąd zmienia się zależnie od natężenia światła</td>
</tr>
<tr>
<td></td>
<td>Kondensator</td>
<td>Tyristor</td>
</tr>
<tr>
<td></td>
<td>Kondensator elektrolityczny z pokazaniem polaryzacji</td>
<td>Tranzystor, przyrząd półprzewodnikowy, wzmacnia lub przełącza sygnały elektryczne</td>
</tr>
<tr>
<td></td>
<td>Cewka z żelaznym rdzeniem (cewka elektromagnesu), np. czujnik indukcyjny</td>
<td>Tranzystor fotoelektryczny, rosnące natężenie światła powoduje wzrost napięcia</td>
</tr>
</tbody>
</table>
1.5 Sprawdzenie wiadomości

Pytania kontrolne i polecenia

1. Podaj trzy znane Ci pierwiastki i scharakteryzuj ich budowę atomową.
2. Narysuj i opisz budowę atomów sodu, chloru i wodoru.
3. Wyjaśnij pojęcie „elektryony swobodne”.
5. Porównaj budowę atomową przewodników i izolatorów.
6. Porównaj właściwości przewodników i izolatorów.
7. Wyjaśnij, co to są półprzewodniki.
8. Objasnij pojęcie prądu elektrycznego.
9. Powiedz, co to jest potencjał elektryczny.
10. Wyjaśnij pojęcia natężenia i napięcia prądu elektrycznego.
11. Opisz jednostkę natężenia prądu.
12. Scharakteryzuj jednostkę napięcia prądu.
13. Podaj przykładowe wartości napięcia zasilającego wybrane urządzenia elektryczne.
14. Wyjaśnij, co to jest gęstość prądu.
15. Powiedz, w jakich jednostkach podaje się gęstość prądu.
16. Powiedz, jak na schematach obwodów elektrycznych oznacza się kierunek przepływu prądu. Określ, czy jest on zgodny z rzeczywistym ruchem elektronów.
17. Wyjaśnij, w jaki sposób oznacza się napięcie i spadki napięcia na schematach obwodów elektrycznych.
18. Opisz rodzaje prądu elektrycznego i narysuj ich przebiegi.
20. Wyjaśnij pojęcie obwodu elektrycznego i opisz jego części.
22. Objasnij i narysuj części składowe obwodu elektrycznego.

Zadania

1. Oblicz wartość ładunku elektrycznego przepływającego w ciągu 3 h w przewodzie, w którym płynie prąd stały o natężeniu 5 A.
 Odpowiedź: 54 000 C.
2. Wyraź w voltach napięcie 1,5 kV.
Wprowadzenie do teorii obwodów elektrycznych

W tym rozdziale dowiemy się:

- jakie zjawiska towarzyszą przepływowi prądu w obwodzie,
- w jaki sposób udzielać pierwszej pomocy przy porażeniu prądem,
- jak obliczyć ciepło, pracę i moc prądu elektrycznego,
- co to jest rezystancja i jak wpływa na nią temperatura,
- jaka zależność wiąże natężenie prądu z napięciem w zamkniętym obwodzie elektrycznym,
- jak sporządzić bilans prądów w tzw. węźle obwodu elektrycznego,
- jak przedstawić bilans napięć w tzw. oczku obwodu elektrycznego,
- na czym polega klasyczna metoda rozwiązywania obwodów elektrycznych.

Prąd, płynąc w obwodzie elektrycznym, zawsze napotyka na swojej drodze przeszkodę w postaci oporu elektrycznego. Wielkość oporu w zasadniczy sposób wpływa na jego wartość i zjawiska towarzyszące jego przepływowi w obwodach elektrycznych. Dlatego też na początku tego rozdziału omówimy opór elektryczny, który występuje w obwodzie elektrycznym podczas przepływu prądu stałego.

Rezystancja

Płynący w przewodnikach prąd elektryczny napotyka przeszkody w postaci atomów tworzących strukturę materiału. płynące strumienie elektrony zderzają się z elektronami krążącymi wokół jąder atomów oraz z jądrami atomów. W wyniku zderzeń niektóre elektrony wypadają ze strumienia tworzącego prąd elektryczny, a więc natężenie płynącego prądu się zmniejsza. Ten opór, jaki napotyka prąd elektryczny, stanowi tzw. opór czynny, inaczej nazywany rezystancją. Charakterystycznym zjawiskiem towarzyszącym temu procesowi jest wydzielanie się ciepła wskutek zderzeń.

Jednostką rezystancji jest om (Ω). 1 Ω jest wartością oporu elektrycznego odbiornika, gdy przyłożone do jego zacisków napięcie o wartości 1 V wywołuje przepływ prądu o natężeniu 1 A, czyli

\[
1 \, \Omega = 1 \, V/1 \, A
\]
Wprowadzenie do teorii obwodów elektrycznych

W praktyce stosuje się jednostki wielokrotnie większe, którymi są:
- kiloom 1 kΩ = 1000 Ω;
- megaom 1 MΩ = 1000 kΩ = 1 000 000 Ω.

Rezystancja przewodu. We wszystkich obwodach elektrycznych występują przewody połączeniowe. Ich rezystancja ma duży wpływ na parametry i pracę obwodu. Niektóre elementy obwodu również wykonuje się z drutu o odpowiednio dobranej rezystancji, która decyduje o właściwościach tych elementów (np. grzejniki, rezystory, cewki).

Rozpatrzymy jak wymiary przewodu i rodzaj materiału, z którego jest wykonany, wpływają na jego rezystancję. Im dłuższy przewód, tym większa rezystancja. Jest to oczywiste, gdyż w dłuższym przewodzie liczba zderzeń elektronów będzie większa. Zatem więcej elektronów wypadnie ze strumienia tworzącego prąd elektryczny, co spowoduje zmniejszenie się natężenia prądu.

Rezystancja zmniejszy się, jeżeli prąd będzie przepływał przez przewód wykonany z takiego samego materiału i o tej samej długości, lecz o większym przekroju. Wówczas strumień elektronów rozłożony równomiernie w całym przekroju ulegnie rozrzedzeniu, a więc częstotliwość zderzeń zmalać, czyli rezystancja się zmniejszy. Natomiast mniejszy przekrój przewodu spowoduje zgęstzenie przepływu elektronów. Wskutek tego wystąpi bardzo duża liczba zderzeń i przy tych zderzeniach wydzieli się duża ilość ciepła. Przy zbyt małym przekroju przewodu i dużym natężeniu prądu wydzielające się ciepło może spowodować nawet stopienie przewodu i przerwanie obwodu – prąd przestanie płynąć. Efekt ten wykorzystuje się w bezpiecznikach.

Podsumowując, można stwierdzić, że rezystancja przewodu jest wprost proporcjonalna do jego długości, a odwrotnie proporcjonalna do jego przekroju.

Trzecim czynnikiem warunkującym rezystancję przewodu jest rodzaj materiału, z którego jest on wykonany. W zależności od rodzaju materiału przewodnika zmienia się jego struktura wewnętrzna, a więc ułożenie atomów i gęstość ich rozmieszczenia, a tym samym rezystancja. Zależność rezystancji od rodzaju materiału określa parametr zwany rezystywnością.

Na podstawie podanych rozważań możemy określić wzór na rezystancję R przewodu

\[R = \frac{\rho l}{S} \]

gdzie:
- \(\rho \) – rezystywność materiału w \(\Omega \cdot \text{mm}^2/\text{m} \),
- \(l \) – długość przewodu w m,
- \(S \) – pole przekroju poprzecznego przewodu w \(\text{mm}^2 \).

Rezystywność (opór elektryczny właściwy) jest wielkością stałą, charakterystyczną dla danego materiału. Określa ona rezystancję przewodu wykonanego z danego materiału o długości 1 m i przekroju 1 mm² (np. rezystywność srebra wynosi 0,0162 \(\Omega \cdot \text{mm}^2/\text{m} \)). Jednostką rezystywności w układzie SI jest \(\Omega \cdot \text{m} \). Stosując tę jednostkę, przekrój przewodu należy wyrazić w metrach kwadratowych. Ponieważ średnice stosowanych przewodów są z reguły niewielkie, dlatego zastosowanie tej jednostki jest niepraktyczne.
Z podanego wzoru wynika, że im mniejsza jest rezystywność materiału, tym lepszym jest on przewodnikiem elektrycznym. Najlepszym przewodnikiem jest srebro, a niewiele gorszymi są miedź i aluminium. Na przewody elektryczne powszechnie stosuje się miedź, ze względu na łatwość łączenia ze sobą przewodów (np. przez lutowanie) i dużą elastyczność. Srebro jest zbyt drogie, a aluminium łatwo pęka i nie można go lutować (natychmiast pokrywa się tlenkiem).

Tworząc z metali stopy, możemy uzyskać materiały o dużej rezystywności. W grzejnikach i rezystorach nastawnych stosuje się np. kantal (stop żelaza i chromu z niewielkimi dodatkami aluminium i kobaltu), manganin (stop miedzi z manganem i niklem) oraz nikielinę (stop miedzi i niklu z dodatkiem manganu lub cynku). Rezystywność wybranych materiałów podano w tablicy 2-1.

Tab. 2-1 Rezystywność wybranych przewodników

<table>
<thead>
<tr>
<th>Rodzaj materiału</th>
<th>Rezystywność (w temp. 20°C)</th>
<th>(\Omega \cdot m)</th>
<th>((\Omega \cdot \text{mm}^2)/\text{m})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srebro</td>
<td></td>
<td>1,62 (\cdot 10^{-8})</td>
<td>0,0162</td>
</tr>
<tr>
<td>Miedź</td>
<td></td>
<td>1,75 (\cdot 10^{-8})</td>
<td>0,0175</td>
</tr>
<tr>
<td>Aluminium</td>
<td></td>
<td>2,87 (\cdot 10^{-8})</td>
<td>0,0287</td>
</tr>
<tr>
<td>Żelazo</td>
<td></td>
<td>0,13 (\cdot 10^{-6})</td>
<td>0,13</td>
</tr>
<tr>
<td>Nikielinę</td>
<td></td>
<td>0,43 (\cdot 10^{-6})</td>
<td>0,43</td>
</tr>
<tr>
<td>Węgiel</td>
<td></td>
<td>0,1 (\cdot 10^{-4}) do 1 (\cdot 10^{-4})</td>
<td>10 do 100</td>
</tr>
</tbody>
</table>

Przykład 2.1

W pracowni elektrotechniki wykorzystuje się opornik o rezystancji 15 \(\Omega\) wykonany z drutu nikelinowego o średnicy \(d = 1,4\) mm. Należy obliczyć długość \(l\) drutu użytego do wykonania tego opornika, przyjmując rezystywność nikielin \(\rho = 0,43 \cdot 10^{-6}\) \(\Omega \cdot m\).

Rozwiązanie

Na podstawie wzoru (2.1) możemy napisać, że rezystancja

\[
R = \frac{\rho l}{S}
\]

Stąd długość drutu

\[
l = \frac{RS}{\rho}
\]

Pole poprzecznego przekroju kołowego o średnicy \(d\) można opisać za pomocą wzoru

\[
S = \frac{\pi d^2}{4}
\]

Zatem poszukiwana długość drutu

\[
l = \frac{R \pi d^2}{4 \rho}
\]
Wprowadzenie do teorii obwodów elektrycznych

\[l = \frac{15 \cdot 3,14159 \cdot (1,4 \cdot 10^{-3})^2}{4 \cdot 0,43 \cdot 10^{-6}} = \frac{15 \cdot 3,14159 \cdot 1,96 \cdot 10^{-6}}{4 \cdot 0,43 \cdot 10^{-6}} = 53,7 \text{ m} \]

\[[l] = \frac{\Omega \cdot m^2}{\Omega \cdot m} = \text{m} \]

Do wykonania tego opornika użyto drutu o długości 53,7 m.

2.2 Konduktancja i konduktywność

Konduktancja, czyli przewodność elektryczna, określa zdolność materiału do przewo-
dzenia prądu. Jest ona odwrotnością rezystancji. Oznacza się ją literą \(G \) i wyraża wzorem

\[G = \frac{1}{R} \]

Jednostką przewodności jest simens (S)

\[[G] = S = \frac{1}{\Omega} \]

Konduktywność jest to przewodność elektryczna właściwa. Stanowi ona odwrotność oporu elektrycznego właściwego (rezystywności). Oznacza się ją grecką literą \(\gamma \) (gamma) i wyraża wzorem

\[\gamma = \frac{1}{\rho} \]

gdzie \(\rho \) jest rezystywnością.

Jednostką konduktywności jest simens na metr (S/m)

\[[\gamma] = \frac{S}{m} = \frac{1}{\Omega \cdot m} \]

Jeżeli przekrój wyrazimy w milimetrach kwadratowych, a długość – w metrach, kon-
duktywność będzie wyrażona w simensometrach na milimetr kwadratowy

\[[\gamma] = \frac{S \cdot m}{\text{mm}^2} \]

Na przykład konduktywność srebra wynosi 61,8 \(\frac{S \cdot \text{m}}{\text{mm}^2} \). Oznacza to, że w celu uzy-
skania rezystancji 1 \(\Omega \) należałoby użyć srebrnego przewodu o przekroju 1 \(\text{mm}^2 \) i długości 61,8 m. Natomiast dla drutu z kantalu o konduktywności 0,69 \(\frac{S \cdot \text{m}}{\text{mm}^2} \) rezystancję 1 \(\Omega \) uzyskamy dla drutu o tym samym przekroju i długości tylko 0,69 m. Konduktywność wybranych materiałów podano w tablicy 2-2.
Wpływ temperatury na rezystancję

Temperatura przewodnika ma zasadniczy wpływ na jego rezystancję. W metalach opór elektryczny wzrasta wraz z temperaturą. Natomiast w elektrolitach, półprzewodnikach i dla węgla w miarę wzrostu temperatury rezystancja maleje.

Odwrotna sytuacja występuje w elektrolitach. Wzrost temperatury zwiększa w nich energię drgań powodujących rozpad w wodzie na jony cząsteczek kwasów, zasad i soli. Zwiększenie ilości jonów, które są nośnikami ładunków elektrycznych, powoduje zmniejszenie oporu właściwego elektrolitu, a więc jego rezystancja się zmniejsza.

Do ilościowego określenia zmiany rezystancji danego przewodnika pod wpływem temperatury służy temperaturowy współczynnik rezystancji. Oznaczamy go grecką literą α (alfa). W zakresie temperatury od –30 °C do +150 °C wzrost rezystancji metali jest proporcjonalny do przyrostu temperatury. Dla większości metali rezystancja zwiększa się o ok. 0,4% na każdy stopień wzrostu temperatury, czyli α = 0,004 1/K.

Wartość rezystancji R_t w temperaturze t można obliczyć za pomocą wzoru

$$R_t = R_0(1 + \alpha \Delta t)$$

gdzie:
- R_0 – rezystancja w temperaturze odniesienia (przy 20 °C),
- α – temperaturowy współczynnik rezystancji,
- Δt – zmiana temperatury.

Specjalne stopy metali (np. kantal i nikielina) odznaczają się bardzo małym temperaturowym współczynnikiem rezystancji, a więc dla nich przyrost rezystancji pod wpływem temperatury jest pomijalnie mały (tabl. 2-3). Temperaturowy współczynnik rezystancji elektrolitów i węgla ma wartość ujemną. Ich rezystancja zmniejsza się wraz ze wzrostem temperatury.

<table>
<thead>
<tr>
<th>Rodzaj materiału</th>
<th>Konduktyność (S · m/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srebro</td>
<td>61,8</td>
</tr>
<tr>
<td>Miedź</td>
<td>57</td>
</tr>
<tr>
<td>Aluminium</td>
<td>34,8</td>
</tr>
<tr>
<td>Nikielina</td>
<td>2,33</td>
</tr>
<tr>
<td>Węgiel</td>
<td>0,1 do 0,01</td>
</tr>
<tr>
<td>Żelazo</td>
<td>10</td>
</tr>
</tbody>
</table>

Wpływ temperatury na rezystancję

Tabl. 2-2 Konduktyność wybranych materiałów
Temperatura jest głównym czynnikiem zewnętrznym zmieniającym rezystancję dużej grupy metali. Istnieją jednakże przewodniki, na których rezystancję wpływają inne czynniki, takie jak:

- pole magnetyczne – np. rezystancja bizmutu zwiększa się przy wzroście natężenia pola magnetycznego;
- oświetlenie – np. rezystancja selenu zmniejsza się pod wpływem światła;
- ciśnienie – np. rezystancja sproszkowanego węgla pod wpływem ściśnięcia go się zmniejsza.

Podstawowe prawa elektrotechniki

Przepływ prądu w obwodzie elektrycznym odbywa się według określonych reguł nazywanych podstawowymi prawami elektrotechniki, do których zaliczamy prawo Ohma i dwa prawa Kirchhoffa. Wykorzystuje się je do projektowania i obliczania obwodów elektrycznych zarówno prądu stałego, jak i zmiennego.

2.4.1 Prawo Ohma

W 1826 roku niemiecki fizyk Simon Ohm odkrył prawo wiązające ze sobą trzy podstawowe wielkości występujące w obwodzie elektrycznym – napięcie, prąd i rezystancję.

Badając prosty obwód elektryczny, składający się ze źródła napięcia o wartości U i opornika o rezystancji R połączonych przewodami, Simon Ohm zauważył, że wraz ze wzrostem napięcia zasilającego U rośnie także wartość natężenia prądu I płynącego w tym obwodzie. Podczas wykonywania doświadczenia dostrzegł on także, że rezystancja R nie ulegała zmianie. Stąd wywnioskował, że rezystancja nie zależy ani od prądu, ani od napięcia.

![Prosty obwód elektryczny do sprawdzenia słuszności prawa Ohma](image-url)
Ohm stwierdził ponadto, że natężenie płynącego prądu elektrycznego jest wprost proporcjonalne do napięcia zasilającego

\[I = kU \]

a współczynnikiem proporcjonalności \(k \) jest odwrotność rezystancji \(R \), czyli

\[k = \frac{1}{R} \]

Ostatecznie sformułował prawo, które nazwano później prawem Ohma. Można je przedstawić w sposób opisany poniżej.

W zamkniętym obwodzie elektrycznym natężenie \(I \) przepływającego prądu jest wprost proporcjonalne do napięcia zasilającego i odwrotnie proporcjonalne do rezystancji tego obwodu

\[I = \frac{U}{R_o} \]

gdzie:
- \(I \) – natężenie prądu w obwodzie,
- \(U \) – napięcie zasilające,
- \(R_o \) – rezystancja obwodu, na którą składa się rezystancja odbiornika \(R \), przewodów oraz źródła napięcia.

Prawa Kirchhoffa

I prawo Kirchhoffa (prądowe)

Regułę tę określa się także mianem prawa prądowego, ponieważ dotyczy tylko prądów płynących w obwodzie elektrycznym. Jego brzmienie podano poniżej.

W obwodzie elektrycznym algebraiczna suma prądów dopływających do jego dowolnego węzła jest równa sumie prądów odpływających od tego węzła.

Matematycznie można to opisać za pomocą równania (rys. 2.2)

\[I_1 + I_2 + I_3 = I_4 + I_5 \]

Rys. 2.2

Węzeł elektryczny \(W \) z zaznaczonymi prądami dopływającymi \((I_1, I_2, I_3) \) i odpływającymi \((I_4, I_5) \).
Przekształcając powyższą zależność, otrzymamy drugą postać pierwszego prawa Kirchhoffa

\[I_1 + I_2 + I_3 - I_4 - I_5 = 0 \]

(2.7)

Korzystając z drugiej postaci równania, należy pamiętać, że wszystkie prądy dopływające do węzła mają znak dodatni, a wszystkie odpływające – znak ujemny.

Drugą postać pierwszego prawa Kirchhoffa można opisać słowami w sposób podany poniżej.

W obwodzie elektrycznym algebraiczna suma prądów dopływających do węzła i odpływających od węzła obwodu elektrycznego jest równa zero.

II prawo Kirchhoffa (napięciowe)

Prawo to w praktyce często nazywa się napięciowym, ponieważ dotyczy bilansu napięć w obwodzie elektrycznym – tzw. oczku. Można je sformułować następująco:

W oczku obwodu elektrycznego algebraiczna suma sił elektromotorycznych jest równa sumie spadków napięć na poszczególnych elementach – odbiornikach oczka.

Aby to prawo zapisać w postaci równania matematycznego dla danego obwodu elektrycznego, należy:
- oznaczyć kierunki przepływu prądów;
- określić kierunki spadków napięć na odbiornikach znajdujących się w obwodzie;
- oznaczyć kierunki występujących sił elektromotorycznych;
- przyjąć jeden kierunek za dodatni i zapisywać wszystkie spadki napięć o zwrotach zgodnych z wybranym kierunkiem jako dodatnie, a o zwrotach przeciwnych ujemne.

Przykład fragmentu obwodu elektrycznego z oznaczeniami naniesionymi zgodnie z podanymi zasadami przedstawiono na rysunku 2.3.

![Rys. 2.3](image)

Oczko obwodu elektrycznego z zaznaczonym kierunkiem rozpatrywania obwodu

Dla podanego obwodu drugie prawo Kirchhoffa można przedstawić za pomocą równania

\[E_1 - E_2 - E_3 = U_1 + U_2 - U_3 - U_4 \]

(2.8)

Podobnie jak w przypadku pierwszego prawa drugie prawo Kirchhoffa możemy przedstawić także w innej wersji, której zapisem matematycznym jest równanie otrzymane po przeksztalconiu równania (2.8) do postaci

\[E_1 - E_2 - E_3 - U_1 - U_2 + U_3 + U_4 = 0 \]

(2.9)
Klasyczna metoda rozwiązywania obwodów elektrycznych

Klasyczna metoda rozwiązywania obwodów elektrycznych służy do określania prądów i napięć w obwodach elektrycznych na podstawie prawa Ohma i praw Kirchhoffa. W rozwiązywanych zadaniach są określone dane dotyczące źródeł napięcia i odbiorników w obwodzie.

Algorytm rozwiązywania obwodu przedstawiono poniżej.
1. Na schemacie obwodu oznaczamy rozpływ prądów i zwroty napięć w poszczególnych gałęziach oraz kierunek rozpatrywania obwodu.
2. Określamy liczbę n węzłów w obwodzie.
3. Wykorzystując prawa Kirchhoffa, układamy tyle równań matematycznych, ile prądów płynie w obwodzie ($n - 1$ równań układamy na podstawie pierwszego prawa Kirchhoffa, a pozostałe równania zgodnie z drugim prawem Kirchhoffa).
4. Wyznaczamy wartości prądów i na podstawie prawa Ohma określamy spadki napięć na elementach obwodu.
5. Po rozwiązaniu zadania sprawdzamy wyniki, podstawiając wartości liczbowe do ułożonych równań.

Przykład 2.2

W przedstawionym na rysunku 2.4 obwodzie elektrycznym znajdują się dwa źródła siły elektromotorycznej $E_1 = 5 \text{ V}$ i $E_2 = 10 \text{ V}$ oraz odbiorniki o rezYSTancjach odpowiednio $R_1 = 1 \text{ Ω}$, $R_2 = 2 \text{ Ω}$ i $R_3 = 3 \text{ Ω}$. Należy wyznaczyć wartości prądów płynących w tym obwodzie.

Rys. 2.4
Schemat obwodu elektrycznego do przykładu 2.2

Rozwiązanie

1. Po oznaczeniu na schemacie kierunków rozpływów prądów i zwrotu napięć na odbiornikach określamy liczbę węzłów. W rozpatrywanym obwodzie są dwa węzły (oznaczone na rysunku punktami 1 i 2). Oznaczamy też kierunek rozpatrywania obwodu – zgodnie z kierunkiem ruchu wskazówek zegara.